
DeTail: Reducing the Flow Completion Time Tail in

Datacenter Networks

David Zats
Tathagata Das
Prashanth Mohan
Randy H. Katz

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-113

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-113.html

October 19, 2011

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
19 OCT 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
DeTail: Reducing the Flow Completion Time Tail in Datacenter
Networks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Electrical Engineering and
Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Web sites are increasingly backed by complex processing to deliver rich content to users via web pages.
Despite the increased complexity, the pages must still be delivered quickly and consistently to meet user?s
expectations for interactivity. To achieve this, datacenters typically employ application-level mechanisms
to squeeze in as much complex processing as possible while still meeting page delivery deadlines. However,
network variability can result in variable packet latency and a long flow completion time tail. This
ultimately leads to either reduced page quality to meet deadlines or increased deadline misses. In this
paper, we evaluate the benefits of a new network congestion management approach for reducing the flow
completion time tail. We argue that in-network traffic management, multipath data transfers, and traffic
differentiation are essential for reducing the tail. We validate our approach through DeTail, an in-network
multipathaware congestion management mechanism that reduces the flow completion tail, increasing the
likelihood that complex web sites will be able to meet interactive deadlines. We show that DeTail effectively
reduces the 99th percentile flow completion tail for a wide range of steady and bursty workloads by up to
80%.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

17

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

DeTail: Reducing the Flow Completion Time Tail in Datacenter Networks

David Zats
UC Berkeley

Tathagata Das
UC Berkeley

Prashanth Mohan
UC Berkeley

Randy Katz
UC Berkeley

Abstract
Web sites are increasingly backed by complex process-
ing to deliver rich content to users via web pages. De-
spite the increased complexity, the pages must still be
delivered quickly and consistently to meet user’s expec-
tations for interactivity. To achieve this, datacenters typi-
cally employ application-level mechanisms to squeeze in
as much complex processing as possible while still meet-
ing page delivery deadlines. However, network variabil-
ity can result in variable packet latency and a long flow
completion time tail. This ultimately leads to either re-
duced page quality to meet deadlines or increased dead-
line misses.

In this paper, we evaluate the benefits of a new network
congestion management approach for reducing the flow
completion time tail. We argue that in-network traffic
management, multipath data transfers, and traffic differ-
entiation are essential for reducing the tail. We validate
our approach through DeTail, an in-network multipath-
aware, congestion management mechanism that reduces
the flow completion tail, increasing the likelihood that
complex web sites will be able to meet interactive dead-
lines. We show that DeTail effectively reduces the 99th
percentile flow completion tail for a wide range of steady
and bursty workloads by up to 80%.

1 Introduction
Web sites have grown increasingly complex in the quest
to create richer content. Consider a typical Facebook
page. It consists of notifications of user events, a chat
application, as well as advertisements. Every web page
is made up of many components, generated by indepen-
dent subsystems and integrated together to provide a rich
user experience.

In addition to increased web page complexity and rich-
ness, users continue to demand good interactive respon-
siveness. Experiments have demonstrated that failing to
provide a highly interactive web site can lead to signif-
icant financial loss [23]. Even increasing page creation
times by 100 ms can negatively impact user satisfaction.
To address these issues, today’s web sites often focus
on meeting strict page creation deadlines of 200-300 ms
99.9% of the time [12, 34].

Construction of a web page from more primitive com-
ponents may require complex processing and commu-
nication across many servers in the datacenter. Compo-
nents such as web search typically leverage partition-

aggregate workflows, dividing queries across many
worker nodes and aggregating the results [12]. On the
other hand, web pages consisting of many simpler com-
ponents depend on front-end servers to perform data re-
quests to many back-end servers for every page creation
[28]. Network flows facilitate these types of inter-server
communication.

Highly variable flow completion times complicate the
meeting of interactivity deadlines. Network flows are
made up of packets whose pacing is dictated by round-
trip delays. Even though datacenter network round-trip-
times can be as low as 250µs, in the presence of conges-
tion, they can grow by two orders of magnitude forming
a long tail distribution [12]. Round-trip-times that aver-
age hundreds of microseconds can occasionally take tens
of milliseconds. This variability in packet delivery yields
flow completion times with a long tail, which may either
cause degraded web pages to be constructed or deadlines
to be missed.

Managing congestion sufficiently well to achieve pre-
dictable flow completion times is challenging. Modern
datacenter topologies scale out, leveraging multiple links
to increase bisection bandwidth [10, 19]. These topolo-
gies are characterized by large fan-in and fan-out points.
Congestion grows rapidly at fan-in points when multi-
ple incoming links transmit to the same outgoing link.
Poorly spreading traffic at fan-out points increases the
likelihood of congestion hotspots. Additionally, datacen-
ters typically exhibit a mixture of flows with differ-
ent completion deadlines [34]. Buffer management ap-
proaches that do not differentiate between these flows
can harm those that are deadline-sensitive. All of these
issues must be addressed to effectively reduce the flow
completion time tail.

In this paper, we propose DeTail, an in-network, mul-
tipath aware, congestion management mechanism. To the
best of our knowledge, DeTail is the first to focus on re-
ducing the flow completion time tail in datacenter net-
works. It achieves this through a synthesis of a small set
of judiciously chosen mechanisms that effectively work
together to reduce network variability. DeTail employs
the following mechanisms to effectively manage conges-
tion:

• in-network traffic management to quickly detect
and respond to rapid congestion increases;

• multipath data transfers to spread traffic across al-
ternate paths, helping to avoid congestion hotspots;

• traffic differentiation to allocate network resources
based on flow requirements.

Our contribution in this paper is to demonstrate how
these mechanisms work together in a cohesive manner
to reduce the flow completion time tail in datacenters.

To demonstrate the implementation feasibility of De-
Tail, we created a DeTail-compliant switch design. Our
design focuses on reducing costs by leveraging on mech-
anisms commonly available in Ethernet switches wher-
ever possible (i.e., priority flow control).

We use NS-3[6] simulations to extensively analyze
and evaluate how DeTail reduces the flow completion
time tail across a wide range of synthetic workloads. We
begin with a range of steady and bursty workloads to as-
sess its envelope of performance, demonstrating that De-
Tail consistently improves 99th percentile flow comple-
tion times by up to 80%. Next, we verify that DeTail’s
improvements are maintained in more complex work-
loads seen in web-facing datacenter environments. Fi-
nally, we evaluate our Click-based [24] implementation
of DeTail to demonstrate its practicality.

In the following section, we analyze the effect of long-
tailed flow completion times on the ability of datacenter
applications to meet interactive deadlines. In Section 3,
we detail the network requirements of a reduced tail solu-
tion for datacenter networks. In Section 4, we discuss our
design of DeTail. Section 5 presents our switch-level im-
plementation and Section 6 examines how the parameters
should be chosen. In Section 7, we describe the method-
ology we used to evaluate DeTail. We present our eval-
uation results in Section 8. We discuss related work in
Section 9 and conclude in Section 10.

2 Effect of Long-Tailed Flow Completions
Modern web sites must respond quickly to user actions.
To meet this requirement, web sites strive to ensure that
it take no longer than 200-300ms to create web pages
[12, 34]. Failure to meet these deadlines can lead to user
dissatisfaction, and therefore financial loss. For example,
a 100ms increase in page load times decreased Amazon’s
sales by 1% [23]. In this section, we argue that variability
in flow completion times is a significant cause that makes
meeting deadlines hard.

It is critical that page creation deadlines be met consis-
tently. Typically 99.9th percentile performance is used to
evaluate consistency [12, 34]. At this percentile, up to 1
in a 1000 page creations may miss their interactive dead-
line. Given the scale of these web sites, using a lower
percentile would result in a prohibitively large number
of users experiencing slow or degraded pages. Hence it
is essential that these deadlines be met at least 99.9% of
the time.

At the same time, web sites increasingly employ com-
plex workflows to provide a richer user experience. In

this paper, we consider two particular cases - (i) partition-
aggregate workflows and (ii) sequential workflows. Both
of these workflows leverage many servers in the datacen-
ter to perform complex operations while meeting page
creation deadlines.

In partition-aggregate workflows, an aggregator node
divides (partitions) computation across multiple worker
nodes. Worker nodes perform the computation in paral-
lel and send their results back to the aggregator. The ag-
gregator combines these results to provide a complete re-
sponse. To ensure that the complete response is obtained
within the deadline, worker nodes may be given as lit-
tle as 10 ms to perform their computation and deliver
their result. If worker nodes do not meet their deadline,
their results are typically discarded [12]. Increasing the
amount of time that worker nodes can take to perform
these computations is important. Mechanisms such as
DCTCP have been developed to reduce flow completion
times, enabling worker nodes to perform longer compu-
tations.

Other types of web sites employ sequential workflows
where a single front-end server fetches data from back-
end datastores for every page creation. For example, a
page load at Facebook consists of an average of 130 data
requests [28]. These requests often have sequential de-
pendencies, i.e. future requests depend on the results of
previous ones. Obtaining the responses of hundreds of
sequential requests within hundreds of milliseconds is a
significant challenge.

For workflows to meet these strict deadlines, requests
and responses, and hence the underlying network flows,
must complete on time. Depending on the connection
state and the window size, it may take multiple round-
trip-times (RTTs) to deliver a request or response. As
demonstrated in [12], while RTTs can be as low as
250µs, congestion can cause queuing delays, increas-
ing RTTs by two orders of magnitude. Furthermore, these
measurements indicate that the distribution of RTTs has
a long tail, with 10% taking over 1 ms. In fact, just one
RTT may potentially take 14 ms, causing requests and
responses to miss their deadlines. As a result, this vari-
ability forces workflows to choose between reducing the
quality of the result and missing deadlines.

Today, this problem is mitigated through application-
level approaches that limit the richness of web pages. In
partition-aggregate workflows, application-level jittering
is employed to reduce the pathological network effects
that cause high flow completion times [12]. On the other
hand, web sites employing sequential workflows over-
come network issues by aggressively reducing the num-
ber of data retrievals and using denormalized data [28].

In DeTail, we attack the root cause of this problem:
long-tailed flow completion times due to poor conges-
tion management. To improve the ability of web sites

2

to meet their deadlines, we focus on ensuring that 99th
percentile flow completion times are reduced irrespec-
tive of load. Our choice of 99th percentile flow comple-
tion time reflects the fact that each web page consists of
many flows that effectively represent sample points. It is
well known that as more sample points are averaged, the
distribution becomes tighter. So, by ensuring that 99% of
flows complete quickly, we increase the likelihood that
web pages consistently meet their deadlines.

In the next section, we discuss the requirements a dat-
acenter network must meet to effectively reduce the flow
completion time tail.

3 Datacenter Network Congestion Man-
agement Requirements

As described in the previous section, better conges-
tion management is required to reduce the flow com-
pletion time tail. In this section, we begin by providing
an overview of datacenter network attributes that make
managing congestion challenging. Next, we delve into
the requirements datacenter network mechanisms must
meet to effectively manage congestion.

3.1 Datacenter network attributes

Datacenter networks typically have two properties that
should be considered when designing a congestion man-
agement mechanism. The topologies they use and the
traffic mix they support both have implications.

Modern datacenter topologies have scaled out, em-
ploying multiple links to increase bisection bandwidth
[10, 19]. As a result, these topologies are typically char-
acterized by large fan-in and fan-out points. At fan-in
points switches may have to contend with the congestion
caused by many incoming links simultaneously send-
ing data to the same outgoing link. At fan-out points,
switches have to decide on which of the outgoing links
to send incoming data. As we will show later in this sec-
tion, both fan-in and fan-out points need to be considered
to effectively manage congestion.

Datacenters are typically characterized by a shared en-
vironment with many applications vying for resources
[31]. Hence, datacenter networks have to support a traffic
mix consisting of flows with various sizes and deadlines
[34]. Flow sizes can range from 2KB - 100 MB and are
expected to support application deadlines as short as 10
ms [12].

In the rest of this section, we will describe why in-
network traffic management is effective at managing fan-
in points and why multipath data transfers are useful for
managing fan-out points. We also explain the utility of
traffic differentiation.

3.2 In-network traffic management
Most protocols maintain the Internet’s decision to place
congestion control and reliability mechanisms at the end
hosts [12, 34, 30]. This decision places a fundamental
limit on the agility of the network in reacting to conges-
tion. It takes approximately one RTT for (i) the sender
to be notified of congestion and (ii) the impact of the
sender’s response to be felt at the bottleneck link. Thus,
even an optimal host-based mechanism cannot resolve
congestion in less than one RTT.

A response time of one RTT is too slow for delivering
consistent flow completion times to datacenter applica-
tions. At a fan-in point, it can take less than one RTT
for the outgoing link’s queues to build-up and even over-
flow, leading to timeouts and unpredictable flow comple-
tion times. Furthermore, the same congestion that causes
queues to build up also increases RTT variabilty, making
end host congestion control even less responsive.

Additionally, protocols often measure network state
indirectly. For example, TCP uses estimation to deter-
mine the presence of congestion. These protocols cannot
react until an easily measurable event (i.e., a packet drop)
has occurred. These events may only occur well after
buffers have been exhausted. At this point, flows are al-
ready taking an unacceptably long time to complete. At-
tempts to resolve this problem by learning optimal win-
dow sizes over long periods of time are well suited in
environments where long-lived connections are common
[12]. However, they are not sufficiently general to effec-
tively support workloads consisting of connections that
are too short for the optimal window size to be learned.

In-network traffic management mechanisms can ef-
fectively manage the rapid increases in congestion that
can occur in datacenter networks. Additionally, they can
make better-informed decisions based on directly mea-
sured network state.

3.3 Multipath data transfer
Most transport protocols were designed with the assump-
tion that only a single path would be used by a flow be-
tween a source and a destination [34, 12, 17]. These ap-
proaches do not effectively leverage the multiple paths
available between every source and destination in data-
center networks.

The mechanisms typically used to spread traffic load
while maintaining the single path assumption [10, 11]
are insufficient [29]. Forwarding decisions based on flow
hashing spread traffic unequally across links because
they do not consider varying flow sizes. Centralized ap-
proaches mitigate this problem, but they do not operate
at the frequency necessary to meet our performance re-
quirements.

Mechanisms that provide in-network support for mul-
tipath data transfers address this issue. They enable traf-

3

fic to be spread more evenly on a per-packet basis instead
of a per-flow basis. Additionally, by operating inside the
network, they allow decisions to be quickly made at fan-
out points instead of waiting for the host to respond.

3.4 Traffic differentiation
As mentioned earlier, congestion spikes are likely to oc-
cur at fan-in points. In-network traffic management and
multipath data transfers reduce the impact of conges-
tion spikes on the network as a whole. However, as they
do not consider the requirements of individual flows,
deadline-sensitive flows can still be unnecessarily de-
layed.

Traffic differentiation mechanisms are an effective ap-
proach for addressing this issue. By considering flow re-
quirements when allocating bandwidth and buffers, these
mechanisms ensure that resources will go to the flows
that need them most.

4 Design of DeTail
In the previous section, we motivated the need to use
in-network traffic management, multipath data transfers,
and traffic differentiation to effectively manage conges-
tion in datacenter networks. In this section, we describe
the mechanisms DeTail employs to meet each of these
requirements. We conclude this section with a discussion
of how DeTail incorporates these mechanisms to perform
in-network, multipath aware congestion management.

4.1 In-network traffic management
In DeTail, we employ link-layer-flow-control (LLFC) to
enable quick, in-network responses based on direct mea-
surement of congestion. By employing LLFC, switches
learn from and react to congestion much more quickly
than host-based approaches. Switches directly measure
buffer occupancy and notify upstream switches when
packet transmissions should be delayed. This approach
completely avoids congestion-related packet losses in the
network, eliminating timeouts and improving the consis-
tency of flow completion times.

4.2 Multipath data transfer
We employ per-packet adaptive load balancing (ALB) to
effectively spread traffic across available paths. When a
packet arrives, our switch forwards it to the valid port
with the smallest output queue. Through this approach,
we reduce the occurrence of hot spots that lead to unpre-
dictable flow completion times.

It needs to be noted that the use of multiple paths to
transfer the data in each flow increases the likelihood
of out-of-order packet delivery. Transport protocols like
TCP may interpret packet reordering as losses, leading
to unnecessary retransmissions. Since we already use
in-network traffic management to prevent congestion-

related losses, we can remedy this situation by employ-
ing a simple re-order buffer at the end-hosts.

4.3 Traffic differentiation

DeTail leverages priority mechanisms to improve the
completion times of deadline-sensitive flows in the pres-
ence of congestion spikes. By employing priority mech-
anisms, we provide additional resources to deadline-
sensitive flows at the expense of deadline-insensitive
flows. Link-level priority mechanisms such as priority
queueing have been studied extensively and are avail-
able in today’s switches [4]. Additionally, our switches
consider priority when performing load balancing and
flow control. By leveraging priority, we ensure a greater
consistency in the flow completion times for deadline-
sensitive flows in datacenter environments.

4.4 Discussion

DeTail incorporates link-layer flow control, adaptive load
balancing, and priority to perform in-network, multpath
aware congestion management. As we will detail in the
rest of this section, we chose these mechanisms because
they operate in a cohesive manner, overcoming the limi-
tations of using each individually.

While link-layer flow control mechanisms eliminate
congestion-related packet drops, they are sometimes
avoided because of the possibility of head-of-line block-
ing [7]. This occurs when the switch asks the previous
hop to postpone packet transmissions over a certain link.
All of packets scheduled for transmission on that link are
delayed even if they are not contributing to congestion.
DeTail reduces the impact of this phenomenon by em-
ploying per-packet adaptive load balancing. Through this
approach, packets that would otherwise be delayed are
transmitted on alternate links.

Per-packet adaptive load balancing techniques evenly
spread load across available links. However, they are of-
ten avoided because of the challenges that packet re-
ordering places on host-based transport protocols. DeTail
addresses this issue by employing link-layer flow control
to guard against congestion-related packet drops. With
packet drops now only occurring due to hardware failures
or bit errors, it is less challenging for end hosts to han-
dle out-of-order packet delivery while maintaining high
performance. As a result, adaptive load balancing mech-
anisms gain the flexibility to reorder packets.

Both link-layer flow control and adaptive load bal-
ancing techniques must effectively handle the highly-
variable traffic mix that is common in datacenter net-
works. By leveraging priority, DeTail ensures that the
most time-sensitive flows in this traffic mix are effec-
tively handled.

4

RX Port
0

RX Port
1

RX Port
2

RX Port
3

IP
Lookup

IP
Lookup

IP
Lookup

IP
Lookup

InQueue
0

InQueue
1

InQueue
2

InQueue
3

C
ro
s
s

b
a
r

EgQueue
0

EgQueue
1

EgQueue
2

EgQueue
3

TX Port
0

TX Port
1

TX Port
2

TX Port
3

PFC Message

Queue Occupancy

Figure 1: DeTail-compliant Switch Design

5 Switch-level implementation of DeTail
In this section, we describe our switch-level implementa-
tion of DeTail. We begin by providing an overview of the
underlying switch architecture. Subsequently, we detail
how the components of DeTail (link-layer flow control,
adaptive load balancing, and prioritization) operate in the
context of this switch architecture. We conclude this sec-
tion with a discussion of how these components leverage
each other to improve performance and touch upon their
feasibility for datacenter networks.

In the remainder of this paper, we will evaluate our
approach through both simulation and a software router
implementation.

5.1 Switch Architecture
In Figure 1, we depict the four-port representation of a
DeTail-compatible switch. As indicated in this figure, we
use the standard Combined Input Output Queue (CIOQ)
architecture that is commonly used in today’s switches
[26]. This architecture employs both ingress and egress
queues, which we denote as InQueue and EgQueue, re-
spectively. Additionally, this architecture utilizes a cross-
bar, which we schedule using the iSlip algorithm [27].

When a packet arrives at an input port (say, RX Port
0), it is passed to the forwarding engine (IP Lookup).
The forwarding engine determines on which output port
(say, TX Port 2) the packet should be sent. Once the
output port has been determined, the packet is stored in
the ingress queue (i.e., InQueue 0) until the crossbar be-
comes available. When the crossbar becomes available,
the packet is passed from the ingress queue to the egress
queue corresponding to the desired output port (i.e., In-
Queue 0 to EgQueue 2). Finally, when the packet reaches
the head of the egress queue, it is transmitted on the cor-
responding output port (i.e., TX Port 2).

5.2 Link Layer Flow Control
DeTail employs LLFC to guard against congestion-
related losses in datacenter networks. Many variants of
flow control mechanisms exist, with credit-based flow
control being commonly used in HPC interconnects [9].
To reduce the cost of implementing DeTail, we chose to

leverage a flow control mechanism that is already part of
the Ethernet standard - Pause Frames [8].

When a switch starts to experience congestion, it sends
a Pause Frame to the previous hop. The Pause Frame in-
forms the recipient that it should postpone packet trans-
missions for a specified duration. Once the pause frame
expires, the recipient is expected to resume transmission
as before.

Ingress queues represent a natural location for plac-
ing the logic for generating Pause Frames. Packets stored
in these queues can be trivially attributed to the port
on which they arrived. By sending Pause Frames to the
corresponding port when an ingress queue fills up, De-
Tail ensures that the correct source postpones transmis-
sion. Additionally, as ingress queues are typically located
next to the corresponding port, generating and sending a
Pause Frame does not involve crossbar communication.

Analogously, egress queues and output ports are the
logical place to respond to Pause Frames. By placing the
logic at this location, we ensure that no packet will be
transmitted on the link for the specified duration. To pro-
vide complete functionality, we also require logic in the
egress queues that prevents buffer overflows. This logic
ensures that packets will not be dropped in egress queues
in periods of congestion and will instead be enqueued
in the ingress queues. When these ingress queues fill up,
they will generate Pause Frames, forcing previous hops
to postpone transmission in the same manner. In this way,
congestion notifications that cannot be resolved locally
will propagate from the bottleneck link all the way back
to the source.

5.3 Adaptive Load Balancing
In DeTail, we employ adaptive load balancing to spread
traffic across available links, reducing the likelihood of
congestion hot spots. To perform ALB, we extend the
logic of the egress queues and the forwarding engines
(IP Lookup).

We require our egress queues to maintain a counter
specifying the number of bytes currently enqueued. As-
sociated with each of these counters is a signal. When-
ever the value of the counter is below a pre-defined
threshold, a logical 1 is asserted on the associated sig-
nal. Otherwise, a zero is asserted. By concatenating all
these signals, we obtain a bitmap of the favored ports,
(F), which are lightly loaded.

Forwarding engines typically employ content address-
able memory (TCAM) to store forwarding entries, speed-
ing up longest prefix matching. As shown in prior work
[10] and depicted in Figure 2, TCAMs can be used to
reference a RAM entry containing additional informa-
tion. In our case, these RAM entries store a bitmap of
acceptable ports (A) on which matching packets can be
transmitted.

5

10.1.2.X

10.1.X.X

10.X.X.X

TCAM RAM

Output Port Bitmap

0101

1100

0101

Acceptable
Ports (A)

+ 1011

Favored
Ports (F)

= 0001

Selected
Port

Figure 2: Using TCAM to perform Adaptive Load Balancing

When a packet arrives, DeTail sends its destination IP
address to the TCAM to determine which entry it belongs
to and obtains the associated bitmap of acceptable ports
(A) from RAM. DeTail then performs a bitwise AND (&)
of this bitmap (A) and the set of favored ports (F) to ob-
tain the set of lightly loaded ports that the packet can use.
DeTail randomly chooses from one of these remaining
ports and forwards the packet.

During periods of high congestion, the set of favored
ports may be empty. In this case, DeTail will randomly
pick a port from the bitmap obtained by the TCAM
lookup (A).

5.4 Priority
DeTail considers the priority of each flow when perform-
ing Link Layer Flow Control (LLFC), queueing packets
in ingress and egress queues, and performing Adaptive
Load Balancing (ALB).

To enable priority-based LLFC decisions, we use an
extension to Pause Frames, known as Priority Flow Con-
trol (PFC) [7]. PFC is a recently standardized protocol
that allows eight different priorities to be paused individ-
ually. PFC has already been adopted by vendors and is
available on newer Ethernet switches [4].

PFC was designed as one of the datacenter bridging
protocols. Consequently, the eight different priority lev-
els were intended to enable different protocols with dif-
ferent L2 reliability assumptions (i.e., Fiber Channel) to
share Ethernet links. In this work, we use PFC to dif-
ferentiate among different types of TCP flows. Networks
that require both types of differentiation may require an
extension to PFC that provides more priority levels.

DeTail also employs priority mechanisms in ALB. The
intuition is that with priority queues, simply considering
the queue occupancy of the egress queues is insufficient.
Take, for example, the case where a packet with priority
7 can be forwarded to output port 1 or 2. Output port 1
has a queue of 10 KB with priority 7. However, port 2 has
a queue of 20 KB with priority 0. Based only on queue
occupancy, ALB would send the packet to output port 1.
However, if it considers priority and sends the packet to
output port 2, the packet will be placed on the wire much
sooner.

To efficiently consider multiple priorities, each egress
queue maintains a counter per priority. Each counter
records the number of drain bytes for its priority. The
number of drain bytes is the number of bytes that must
be transmitted before a new packet with the given pri-

ority can be placed on the wire. Since we employ strict
priority queueing, the number of drain bytes can sim-
ply be computed as the number of enqueued bytes with
higher or equal priority. This value can be maintained by
simply incrementing/decrementing the counters for each
arriving/departing packet.

Given these counters, DeTail constructs a bitmap of fa-
vored ports, (F) for each priority. When a packet arrives,
its priority is determined and the appropriate bitmap of
favored ports is selected. This bitmap is used in the same
way described earlier to determine which output port to
forward the packet to.

5.5 Discussion
In the remainder of this section, we discuss how the com-
ponents of DeTail depend on each other to meet our per-
formance goals. We also analyze the feasibility of our
approach for datacenter networks.

5.5.1 Component Interdependence

The constituent components of DeTail depend on each
other to meet our performance requirements. Further-
more, the performance of each one greatly improves
when the others are present.

As discussed in the previous section, link-layer flow
control (LLFC) mechanisms typically suffer from head-
of-line blocking. Not only does adaptive load balanc-
ing (ALB) ameliorate this problem, but priority helps as
well. Priority ensures that high priority packets will not
suffer when low-priority ones cause congestion.

LLFC also assists ALB beyond reducing the need for
hosts to respond aggressively to out of order packets. As
mentioned earlier, priority flow control PFC effectively
propagates congestion information from the bottleneck
link back to the sources. A congested switch will send
PFC messages to previous hop switches, asking them to
postpone packet transmissions. The switches receiving
PFC messages will enqueue packets, instead of sending
them. As their egress and then ingress queues fill up,
they will send their own PFC messages to their previ-
ous hops. Consequently the egress queue based decisions
performed by ALB incorporate the congestion informa-
tion provided by PFC.

Finally, priority mechanisms are only sufficient on
their own when there are just a few high-priority flows.
Whenever there are large numbers of high priority flows,
high priority packets will still get lost due to buffer over-
flows. Thus, our priority mechanisms depend on ALB
and LLFC to prevent these queue buildups.

5.5.2 Feasibility Analysis

DeTail depends on the ability of datacenter networks to
employ custom switches. This assumption is appropriate
for modern-day datacenters because operators are show-
ing a willingness to adopt new designs [34].

6

Today, building custom switches is less of a hurdle
than it was in the past. Custom switches can be built from
commodity ASICs. These ASICs are reasonably priced;
a PCI-E board with a switch ASIC costs as little as $400
[25]. Furthermore, ASIC manufacturers are showing a
willingness to adopt new protocols. For example, the FM
6000 ASIC already incorporates the recently standard-
ized datacenter bridging protocols [4].

However, we recognize that it is advantageous to lever-
age existing mechanisms, where possible, to reduce im-
plementation cost. Our choice of using PFC to perform
link-layer flow control was based on this consideration.

6 DeTail Parameters
In the previous section, we discussed how our Link
Layer Flow Control (LLFC) and Adaptive Load Balanc-
ing (ALB) mechanisms employ thresholds when deter-
mining the action to take. In this section, we provide
analysis of how to choose these parameters. We conclude
this section with an assessment of how end host parame-
ters should be chosen when running DeTail.

6.1 Link Layer Flow Control
The LLFC thresholds must satisfy multiple requirements
that make choosing them challenging. Switches must
transmit PFC messages early enough so that they can ab-
sorb the burst of packets that will arrive before the mes-
sages take effect. Additionally, switches must carefully
consider how long to pause the link for, else they risk
underflowing queues and wasting resources.

To reduce decision-making complexity, switches typ-
ically use PFC in an on/off fashion [7]. Instead of cal-
culating how long to pause the link for, they send PFC
messages with the max duration. When queue occupancy
drops below a certain threshold, they unpause the link by
sending another PFC message with the duration set to 0.
We take the same approach in DeTail.

As described in [7], to calculate these thresholds we
must determine how long it takes for a generated PFC
message to take effect. When a switch generates a PFC
message, it is enqueued for transmission at the head of
the queue. Since the ongoing packet transmission may
have just started, the message must wait TO time for
this transmission to complete. Next the PFC message en-
counters a transmission and propagation delay TP as it
travels from the sending switch to the recipient. The re-
cipient is then given TR time to react to the message. An
ongoing packet transmission may have started just before
the recipient reacts, in effect delaying the response for TO
time. Even, after the recipient has reacted, there may still
be TP worth of bytes traveling in the wire.

Taking all of these delays into account, the amount of
time it takes to respond to a PFC message is given by:

T = TO +TP +TR +TO +TP (1)

If we consider Gigabit Ethernet links, the worst-case TO
is 1530B/1Gbps = 12.24µs 1. Assuming copper links
and (conservative) transmitter delays of 2.5µs [7], our
maximum propagation delay is TP = 6.6µs. According to
the Ethernet standard, the switch has two 512-bit-times
to react, or 1.024µs 2. In total, it may take up to 38.7µs
to react to a PFC message.

Assuming 1 Gbps links, 4838 bytes may arrive after
a switch generates a PFC message. Furthermore, since
we pause every priority individually, this can happen for
all eight priorities. Thus, we must leave 4,838B× 8 =
38,704B of buffer space for receiving packets after PFC
generation. Assuming 128 KB buffers, this implies a
high threshold of (131,072B− 38,704B)/8 = 11,546B
drain bytes per priority.

Now we must determine the thresholds for unpausing
priorities. Setting an appropriate threshold is important
because we want to ensure that the queues do not under-
flow. In our calculations, we assume that enqueued pack-
ets will drain at 1 Gbps. Therefore, we must unpause pri-
orities when their drain byte counters drop below 4,838B
to start receiving new packets before the ingress queue
drains completely. In certain situations, ingress queues
may drain faster or slower than 1 Gbps. If they drain
slower, additional PFC messages may have to be sent, re-
pausing the priority. If they drain faster, then the egress
queues reduce the likelihood link underutilization.

6.2 Adaptive Load Balancing
Ideally, when performing Adaptive Load Balancing
(ALB), the algorithm would pick the egress queue with
the smallest number of drain bytes for the given prior-
ity. Since this may be prohibitively expensive, we use the
threshold approach described earlier.

Given our approach, we must determine how many
thresholds to have for a given priority (i.e. most favored,
favored, and least favored ports) as well as what the
thresholds should be. Clearly increasing the number of
thresholds increases complexity so the benefits of each
additional threshold must outweigh the complexity cost.

Through our simulations we determined that having
two thresholds of 16 KB and 64 KB yields favorable re-
sults. However satisfactory results can also be obtained
for switches that can only support one threshold per pri-
ority.

6.3 End-Host Timers
End-host timers represent a tradeoff. Setting them too
low leads to spurious retransmissions that waste network
resources. Setting them too high leads to long response-
times when packets are dropped.

TCP uses end-host timeouts to detect packet drops
that are both due to congestion and hardware failures.
Congestion occurs frequently, so responding quickly

7

0	

20	

40	

60	

0.1	 1	 10	 100	

99
th
	 P
er
ce
n*

le
	

Co
m
pl
e*

on
	 T
im

e	
(m

s)
	

TCP	 RTOmin	 (ms)	

24	 32	 48	

Figure 3: All-to-all Incast with varying numbers of
servers connected to the same switch. RTOs less than 10
ms cause spurious retransmissions.

to packet drops is important for achieving high per-
formance. Conversely, DeTail only experiences packet
drops due to relatively infrequent hardware failures.
Therefore, it is more important for the timeouts to be
larger to avoid spurious retransmissions.

To determine the optimal timeout value for DeTail, we
simulated all-to-all Incast for 25 iterations with varying
numbers of servers and timeout values. During every in-
cast, one server receives a total of 1 MB from the remain-
ing servers. We plot the 99th percentile completion times
for this experiment in Figure 3. As shown from this fig-
ure, timeouts 10 ms and larger are optimal for avoiding
spurious retransmissions.

In this simulation, there is only one switch between all
of the servers. So for the rest of our simulations we use
a timeout of 50 ms to reflect that datacenters topologies
typically have multiple hops.

7 Methodology
In this section, we describe the methodology used to
evaluate DeTail. We begin by delving into the switch
model used for our NS-3-based simulations. We use this
model to evaluate DeTail’s performance across a wide
range of workloads, demonstrating the generality of our
approach. Afterwards, we describe the Click-based im-
plementation.

7.1 Simulation Model
Our NS-3 based simulation closely follows the switch
design presented in Figure 1. Datacenter switches typ-
ically have 128 - 256 KB buffers per port [12]. Given
this constraint as well as the need to absorb packets af-
ter sending PFC messages, we chose per-port ingress and
egress queues of 128 KB.

Network simulators typically assume that nodes are
infinitely fast at processing packets. Maintaining this as-
sumption would not allow us to effectively evaluate De-
Tail. So, we extended NS-3 to include real-world pro-
cessing delays. Switch delays of 25µs are common in
datacenter networks [12]. We break-down this delay as
follows, providing explanations where possible:

• 12.24µs transmission delay of a full-size 1530B

Ethernet frame on a 1 GigE link.

• 3.06µs crossbar delay when using a speedup of 4.
Crossbar speedups of 4 are commonly used to re-
duce head of line blocking [26].

• 1.6µs propagation delay on a copper link [7].

• 5µs transceiver delay (both ends of the link) [7].

• 3.1µs forwarding engine delay (the remainder of
the 25µs budget).

In our simulation, we incorporate the transceiver delay
into the propagation delay. All of the other delays are
implemented individually, including the response time to
PFC messages.

7.2 Implementation
To validate our approach, we also implemented DeTail in
Click [24]. Click is a software router platform that allows
the user to express functionality by composing elements.
In general, our implementation mirrors the design deci-
sions specified in Section 4 and depicted in Figure 1. In
this section, we describe the salient differences and ana-
lyze the impact they have on our parameters.

7.2.1 Design Differences

Unlike hardware switches, software routers typically do
not have a notion of a crossbar. Instead, packets are typ-
ically placed directly into the output queue by the for-
warding engine. This output-queued approach is poorly
suited to DeTail because we rely on ingress queues to
determine when to send PFC messages.

To address this issue, we modified Click to have both
ingress and egress queues. When packets arrive, the for-
warding engine simply annotates them with the desired
output port and places them in the ingress queue corre-
sponding to the port on which they arrived. Whenever the
output port becomes free, it pulls packets from the egress
queue. This action causes the egress queue to pull multi-
ple packets from the ingress queues in the order specified
by iSlip [27].

Software routers also typically do not have direct con-
trol over the underlying hardware resources. For exam-
ple, when Click sends a packet, it is actually enqueued in
the driver’s ring buffer. The packet is then DMAed to the
NIC where it waits in another buffer until it can be placed
on the wire. In Linux, the driver’s ring buffer alone can
contain hundreds of packets. Thus it is difficult for the
software router to asses how congested the output link is
when performing load balancing. Worse yet, hundreds of
packets may be transmitted between the time when the
software router receives a PFC message and it takes ef-
fect.

8

…

…

Figure 4: Simulation topology with 8 racks of 12 servers each

To address this issue, we add a rate limiter in Click
right before every output port. Our rate limiters clock
out packets based on the bandwidth of the link. As
a result, they effectively reduce packet buildup in the
driver’s and NIC’s buffers, instead keeping those pack-
ets in Click’s queues for a longer duration. To ensure
that packet buildup does not occur in the driver or the
NIC, the rate limiters clock out packet at a rate that is
2% slower than line rate. While effective, this approach
negligibly impacts performance.

7.2.2 Parameter Modifications

The design differences of our software router impact our
parameter choices. Our software router does not have
hardware support for PFC messages. Consequently it
takes more time for them to be generated and responded
to. Additionally, our rate limiter allows for 6 KB of out-
standing data to ensure efficient DMA use. As a result,
PFC messages may be enqueued for 48µs before they
are placed on the wire and an additional 6 KB of data
may be transmitted before a PFC message takes effect.

Addressing these physical constraints requires mak-
ing decisions about pause/unpuase thresholds and ingress
queue sizes. To absorb worst-care traffic bursts, we were
forced to make a tradeoff between two options: increas-
ing the buffer size or ensuring that only two priorities are
used at a time. Given our desire to provide a clear assess-
ment of the advantages of DeTail in datacenter networks,
we opted for the reduced priority approach.

8 Evaluation
In this section, we evaluate DeTail, both through simula-
tion and implementation.

8.1 Simulation
In our simulations, we used the topology shown in Fig-
ure 4. The simulation has 8 racks with 12 servers each.
These racks are interconnected by a multi-rooted tree
with an oversubscription factor of 3, which is moderate
compared to the ratios typically used in today’s datacen-
ters [3].

We begin by putting DeTail through a series of basic
traffic workloads, and contrasting its performance with
the individual constituent components. To achieve this,

each workload is run in the following switch environ-
ments:

Baseline: switches employ flow-level hashing

Priority: in addition to Baseline, switches employ prior-
ity ingress and egress queues

FC: in addition to Baseline, switches employ flow con-
trol

Priority+PFC: in addition to Priority, switches perform
priority flow control

DeTail: in addition to Priority+PFC, switches perform
priority-aware adaptive load balancing

In the Baseline and Priority environment (i.e., en-
vironments without flow control mechanisms), a TCP
timeout of 10ms is used as suggested by prior work [32,
12]. For all the other environments, the timeout is set to
50ms as discussed in Section 6.3.

These microbenchmarks are intended to highlight the
advantages of DeTail across a wide range of traffic en-
vironments. In all the presented results, we focus on the
99th percentile completion time to highlight the reduc-
tion of the tail. Later, we present the results of synthetic
web-facing datacenter workloads.

8.1.1 Microbenchmarks

In this section, we analyze DeTail with an all-to-all query
workload - each server in the simulated datacenter gen-
erates queries to a random destination server according
to a Poisson distribution. In each query, a TCP connec-
tion is used to send a request of 1460 bytes (i.e., full
sized packet) and receive a response of a specific number
of bytes. The size of these response (henceforth called
query size) is randomly chosen to be 2KB, 8KB, or 32KB
with equal probability. These sizes extend past the range
of query traffic common in datacenter networks [12]. We
select randomly from discrete sizes to enable more effec-
tive analysis of 99th percentile performance.
Bursty Workload: Network traffic is traditionally char-
acterized as being bursty in nature. Hence we start by
evaluating DeTail on a bursty workload. Every 50ms
interval, each server generates a burst of queries for a
duration varying from 2.5ms to 12.5ms (different burst
sizes). During each of these bursts, each server generates
queries to random destinations for the specified duration
at an average rate of 10,000 queries / second. We con-
sider all flows to be of the same priority level.

Figure 5 illustrates the effectiveness of DeTail in re-
ducing the tail, by presenting the distribution of comple-
tion times of 8KB flows under a burst duration of 12.5ms.
While the Baseline case may have a 99th percentile com-
pletion time of 85ms (more than 4.5 times the 50th per-
centile of 18ms), DeTails reduces the the 99th percentile

9

0	

20	

40	

60	

80	

100	

0	 50	 100	

Cu
m
ul
a&

ve
	 D
is
tr
ib
u&

on
	 (%

)	

Flow	 Comple&on	 Time	 (ms)	

DeTail	
FC	
Baseline	

Figure 5: Distribution of
completion times of the
8KB queries under a burst
duration of 12.5ms

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

2.5	 5	 7.5	 12.5	

99
th
	 P
er
ce
n*

le
	 C
om

pl
e*

on
	 T
im

e	
(N
or
m
al
iz
ed

	 to
	 B
as
el
in
e)
	

Burst	 Dura*on	 (ms)	

FC	 DeTail	

(a) 2 KB queries

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

2.5	 5	 7.5	 12.5	

99
th
	 P
er
ce
n*

le
	 C
om

pl
e*

on
	 T
im

e	
(N
or
m
al
iz
ed

	 to
	 B
as
el
in
e)
	

Burst	 Dura*on	 (ms)	

FC	 DeTail	

(b) 8 KB queries

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

2.5	 5	 7.5	 12.5	

99
th
	 P
er
ce
n*

le
	 C
om

pl
e*

on
	 T
im

e	
(N
or
m
al
iz
ed

	 to
	 B
as
el
in
e)
	

Burst	 Dura*on	 (ms)	

FC	 DeTail	

(c) 32 KB queries

Figure 6: 99th percentile query completion times of FC and DeTail relative to that
of Baseline, for different query sizes across different burst durations.

to 40ms - a reduction of more than 50%. While flow con-
trol mechanisms is able to achieve 40% (49ms) of the re-
duction by completely avoid packet drops (and therefore
timeouts), it does so at the cost of the median perfor-
mance (compare the distribution of FC with Baseline).
By also employing adaptive load balancing, DeTail en-
sures that the median performance remains high as well,
thus illustrating the importance of the synergy between
the individual mechanisms.

Figure 6 presents the 99th percentile completion time
for different burst durations, normalized to that of the
Baseline in each case. This clearly illustrates that DeTail
provides between 7% and 65% reduction in the 99th per-
centile completion time across different burst durations
and for all 3 query sizes. Reinforcing our earlier expla-
nation, flow control mechanisms provide the most benefit
in most cases (more than 40% reduction in some cases).
In many cases, adaptive load balancing provides an ad-
ditional benefit of up to 20% over FC. Note the common
trend within each query size – higher the duration of the
burst, greater the chance for packet drops in the Base-
line case and hence greater the overall improvement with
DeTail.

As is also visible for the steady workload that follows,
there are a few cases where flow control (FC) increased
completion times (e.g., 2KB queries under 5ms burst)
over the Baseline. We attribute this to head-of-line block-
ing, which is mitigated by adaptive load balancing.
Steady Workload: We also subject DeTail to a steady
workload of continuous all-to-all queries with the same
query sizes as before. The average query rate is varied
from 500 to 2500 queries / second, which represents load
factors between 0.17 and 0.85. Figure 8.1.1 illustrates
the distribution of completion times of the 8KB queries
at 2000 queries / second (load factor 0.68). Unlike the
bursty workload illustrated in Figure 5, there were rel-
atively few packet drops in this steady workload. As a
result, flow control mechanisms do not provide any im-
provement (FC and Baseline coincide with each other).
Rather, adaptive load balancing provides more consistent

completion times by ensuring a uniform distribution of
load across all paths in the network. In Figure 8, we see
that this behavior achieves about 10% to 81% improve-
ment across the query rates for all 3 query sizes.

Note that higher rates have more improvement in the
99th percentile completion time. Specifically, at 2500
queries per second, the network is under a load high
enough to cause significant packet drops, which allows
FC to provide 20% to 25% improvement over Baseline.
Even at such a high load and mixed query sizes, DeTail
is able to sustain a 99th percentile performance of about
5.3ms for 2KB queries, a reduction of over 81% over
Baseline of 28.7ms.
Mixed Workload: From these experiments, it is clear
that both flow control and load balancing are useful
mechanisms with the utility of each depending on the
bursty or steady nature of the workload. We further eval-
uate this with a mixed workload where bursts are fol-
lowed by steady periods. Similar to the bursty workload,
every 50ms interval begins with a 5ms burst of queries
generated at a rate of 10,000 queries/second. During
the remaining 45ms, queries are generated at a lower
rate to represent steady traffic. As before, each query is
transmitted to a random destination and the query size
is randomly chosen to be one of 2, 8, or 32KB. The
steady period query rate is varied from 250 to 1000
queries/second. Figure 9 illustrates that DeTail provides
between 25% to 60% reduction in 99th percentile com-
pletion times, with significant contributions from both
flow control and load balancing mechanisms.
Prioritized Workload: DeTail employs multiple priori-
tization mechanisms to support the traffic mix common
in datacenters. To evaluate the advantages of these mech-
anisms, we re-ran one of the mixed workloads, this time
randomly assigning each flow to one of two priority lev-
els. In Figure 10, we depict the 99th percentile com-
pletion times of Priority (switches employ only prior-
ity mechanisms), Priority+PFC, and DeTail, relative to
that of Baseline. While the reduction in completion time
of high priority flows by Priority is expected, DeTail

10

0	

20	

40	

60	

80	

100	

0	 2	 4	 6	

Cu
m
ul
a&

ve
	 D
is
tr
ib
u&

on
	 (%

)	

Flow	 Comple&on	 Time	 (ms)	

DeTail	
FC	
Baseline	

Figure 7: Distribution of
completion times of 8KB
queries under a steady query
rate of 2000 queries/second

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

500	 1000	 2000	 2500	

99
th
	 P
er
ce
n*

le
	 C
om

pl
e*

on
	 T
im

e	
	

(N
or
m
al
iz
ed

	 to
	 B
as
el
in
e)
	

Query	 Rate	 (queries/s)	

FC	 DeTail	

(a) 2 KB queries

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

500	 1000	 2000	 2500	

99
th
	 P
er
ce
n*

le
	 C
om

pl
e*

on
	 T
im

e	
	

(N
or
m
al
iz
ed

	 to
	 B
as
el
in
e)
	

Query	 Rate	 (queries/s)	

FC	 DeTail	

(b) 8 KB queries

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

500	 1000	 2000	 2500	

99
th
	 P
er
ce
n*

le
	 C
om

pl
e*

on
	 T
im

e	
	

(N
or
m
al
iz
ed

	 to
	 B
as
el
in
e)
	

Query	 Rate	 (queries/s)	

FC	 DeTail	

(c) 32 KB queries

Figure 8: 99th percentile query completion times of FC and DeTail relative to that
of Baseline, for different query sizes across different steady query rates.

0	

0.2	

0.4	

0.6	

0.8	

1	

250	 500	 750	 1000	

99
th
	 P
er
ce
n*

le
	 C
om

pl
e*

on
	 T
im

e	
(N
or
m
al
iz
ed

	 to
	 B
as
el
in
e)
	

Steady	 Period	 Query	 Rate	
(queries/s)	

FC	 DeTail	

(a) 2 KB queries

0	

0.2	

0.4	

0.6	

0.8	

1	

250	 500	 750	 1000	 99
th
	 P
er
ce
n*

le
	 C
om

pl
e*

on
	 T
im

e	
(N
or
m
al
iz
ed

	 to
	 B
as
el
in
e)
	

Steady	 Period	 Query	 Rate	
(queries/s)	

FC	 DeTail	

(b) 8 KB queries

0	

0.2	

0.4	

0.6	

0.8	

1	

250	 500	 750	 1000	 99
th
	 P
er
ce
n*

le
	 C
om

pl
e*

on
	 T
im

e	
(N
or
m
al
iz
ed

	 to
	 B
as
el
in
e)
	

Steady	 Period	 Query	 Rate	
(queries/s)	

FC	 DeTail	

(c) 32 KB queries

Figure 9: Simulation results with mixed query workload for varying data rates

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

2KB	 	 8KB	 32KB	 2KB	 	 8KB	 32KB	

High	 Priority	 Low	 Priority	

99
th
	 P
er
ce
n*

le
	 C
om

pl
e*

on
	 T
im

e	
(N
or
m
al
iz
ed

	 to
	 B
as
el
in
e)
	

Query	 Sizes	 &	 Priority	 of	 Queries	

Priority	

Priority+PFC	

DeTail	

Figure 10: Simulation results
with mixed query workload
for varying priorities

achieves an additional 12% to 22% reduction over Pri-
ority. Furthermore, DeTail manages to improve the low
priority flows by 7% to 35%. This further demonstrates
the synergistic behavior of the mechanisms used in De-
Tail.

We conclude this section by summarizing the key take-
aways of the microbenchmarks.

• The benefit of the individual components of
DeTail varies with workload: Priority flow con-
trol provides the most benefit for bursty workloads
while adaptive load balancing provides the most
benefit for steady workloads.

• These mechanisms together help each other
overcome the limitations of using each individ-
ually: For example, adaptive load balancing helps
overcome the head-of-line blocking that priority
flow control can cause.

8.1.2 Web-facing Workload

In this section, to further illustrate the potential improve-
ment by DeTail, we simulate and analyse two different
synthetic web workloads based two different traffic pat-
terns observed in literature [12, 34, 28] - (i) Sequential
queries, and (ii) Partition/Aggregate queries. The servers
in our simulated datacenter are equally divided into
front-end (web-facing) servers and back-end servers. For

every web request that a front-end server receives, it gen-
erates a set of data retrieval queries to randomly chosen
back-end servers, either sequentially or in parallel, de-
pending on the workload. All data-retrieval queries gen-
erated for a web-request need to complete for the web-
request to be responded. The pattern of back-end queries
is explained later in each of the workloads. In each
case, each server also has an average of 1 long delay-
insensitive low-priority flow of 1MB, which is based on
the median size of long flows in datacenters [12]. As be-
fore, we focus on the 99th percentile completion time of
each individual data retrieval query, as well as, the ag-
gregate completion time of the whole set of queries (this
being the minimum time that the web request will take to
generate a response).

Sequential Workload: Each data retrieval query is ran-
domly assumed to be 4, 6, 8, 10 or 12KB in size (av-
erage 8KB [1]). Each web request generates a set of 10
such queries sequentially, the total size of which is 80KB
(chosen for effective analysis). The web requests are gen-
erated in the same way as the mixed workload in the
microbenchmark analysis – every 50ms, each front-end
server gets a burst of 800 web requests/second for 10ms,
followed by a steady period of 333 web requests/second
for the rest 40ms.

Figure 11(a) and Figure 11(b) shows relative perfor-
mance Priority, Priority+PFC, and DeTail, normalized

11

0	

0.2	

0.4	

0.6	

0.8	

1	

4KB	 6KB	 8KB	 10KB	 12KB	

99
th
	 P
er
ce
n*

le
	 C
om

pl
e*

on
	 T
im

e	
	

(N
or
m
al
iz
ed

	 to
	 B
as
el
in
e)
	

Query	 Size	

Priority	
Priority+PFC	
DeTail	

(a) Completion time of in-
dividual data queries under
mixed request workload

0	

0.2	

0.4	

0.6	

0.8	

1	

80KB	

99
th
	 P
er
ce
n*

le
	 C
om

pl
e*

on
	 T
im

e	
(N
or
m
al
iz
ed

	 to
	 B
as
el
in
e)
	

Query	 Set	 Size	

Priority	
Priority+PFC	
DeTail	

(b) Aggregate com-
pletion time of 10 se-
quential data queries

0	

10	

20	

30	

40	

50	

200	 300	 400	 500	 600	

99
th
	 P
er
ce
n*

le
	 C
om

pl
e*

on
	 T
im

e	
(m

s)
	

Web	 Request	 Rate	 (web	 requests	 /	 sec)	

Baseline	 DeTail	

(c) Aggregate completion time of 10
sequential queries under sustained re-
quest rates

Figure 11: Simulation results of web-facing sequential query workload

0	

0.2	

0.4	

0.6	

0.8	

1	

99
th
	 P
er
ce
n*

le
l	 C
om

pl
e*

on
	 T
im

e	
	

(N
or
m
al
iz
ed

	 to
	 B
as
el
in
e)
	

Individual	 Queries	

Priority	

Priority
+PFC	
DeTail	

(a) Completion time
of individual queries

0	

0.2	

0.4	

0.6	

0.8	

1	

10	 20	 40	

99
th
	 P
er
ce
n*

le
	 C
om

pl
e*

on
	 T
im

e	
	

(N
or
m
al
iz
ed

	 to
	 B
as
el
in
e)
	

#	 Incast	 Servers	 	

Priority	
Priority+PFC	
DeTail	

(b) Aggregate comple-
tion time of P/A queries

Figure 12: Simulation results for
web-facing part.-agg. workload

to that of Baseline. Considering each individual data re-
trieval queries, it is unsurprising that prioritization is able
to provide about 50% reduction for all five query sizes.
But DeTail provides a further 60% reduction over Pri-
ority, which is a total of about 80% reduction. On the
whole query sets, DeTail provides about 70% reduction
over Baseline, and about 40% over Priority.

Figure 11(c) compares the aggregate completion times
of 10 data retrieval queries for DeTail under sustained
web request rates on each front-end server (steady load).
It is evident that across a wide range of load, DeTail
achieves a lower 99th percentile completion time than
Baseline. In other words, given a deadline of 10ms, De-
Tail can sustain about 21% higher load than Baseline.

Partition/Aggregate Workload: In this workload, each
web request generates a set of 2KB queries in parallel to
randomly chosen 10, 20 or 40 back-end servers. Simi-
lar to the previous workload, a mixed workload of 10ms
bursts at 1000 requests/second and 40ms of 333 requests
/ second is used.

As shown in Figure 12, DeTail achieves more than
50% reduction in the 99th percentile completion time of
individual 2KB data retrival queries compared to Base-
line, as well as, Priority. This translates to about 65%
reduction in the aggregate completion time of the parti-
tion/aggregate queries (about 55% reduction over Prior-
ity).

Note the contrast between the two web workloads –
while adaptive load balancing mechanism provide the
maximum benefit in sequential queries, priority flow
control mechanisms provide the maximum benefit in par-
tition/aggregate workloads.

In both workloads, DeTail achieves improvement in
completion times of deadline sensitive flows without
harming the background flows. In fact, through effective
load balancing, DeTail actually improves background
flow performance by 50%.

1	

10	

100	

1500	 2000	

99
th
	 P
er
ce
n*

le
	 C
om

pl
e*

on
	 T
im

e	
(m

s)
	

Query	 Rate	 (query	 /	 s)	

8	 KB	 16	 KB	
64	 KB	 128	 KB	
32	 KB	

(a) Priority

1	

10	

100	

1500	 2000	

99
th
	 P
er
ce
n*

le
	 C
om

pl
e*

on
	 T
im

e	
(m

s)
	

Query	 Rate	 (query	 /	 s)	

8	 KB	 64	 KB	
16	 KB	 128	 KB	
32	 KB	

(b) DeTail

Figure 13: 99th percentile completion time in Click-
based implementation

8.2 Implementation
We ran our Click-based implementation [24] on the
Emulab-based Deter testbed [13]. Each of the nodes we
used in the Deter cluster only has 4 experimental in-
terfaces. So, we created a 16-server (36-node) Fat Tree
topology consisting of Gigabit Ethernet links running at
line rate. We designated half the servers to be back-end
servers and half to be front-end servers.

To evaluate the performance of our Click-based imple-
mentation, we ran a bursty workload with different burst
rates. Every second, each front-end generates a 10 ms
burst of requests to randomly chosen back-end servers.
The response for each of these requests is randomly cho-
sen between 8, 16, 32, 64, and 128KB. Additionally, each
front-end server is constantly engaged in a 1MB back-
ground flow to a randomly selected back-end server.

In Figure 13, we plot the 99th percentile completion
times of Priority and DeTail. From these figures, we see
that DeTail provides predictable performance, irrespec-
tive of flow size and traffic rate. In contrast, Priority starts
to experience packet drops and timeouts at larger query
rates. In these cases, DeTail provides an order of mag-
nitude performance improvement. We recognize that a
TCP implementation tuned for datacenter networks (i.e.
with 10 ms min RTOs) would fare better in this environ-
ment. However, as TCP’s RTOs have to be larger than

12

RTTs to avoid spurious retransmission, it would still per-
form poorly due to packet losses that occur in the absence
of DeTail’s mechanisms.

Before continuing, we would like to remind the reader
that our Click-based implementation lacks the hardware
support commonly present in hardware switches to en-
able mechanisms such as priority flow control. Conse-
quently, we anticipate a DeTail-compliant switch would
have performance that more closely resembles our simu-
lations than our implementation.

9 Related Work
In this section, we discuss prior work and how it relates
to our in-network, multipath-aware congestion manage-
ment mechanism. To provide context for our work, we
focus primarily on three areas: Internet protocols, data-
centers, and HPC interconnects, discussing each in turn.

9.1 Internet Protocols
The Internet was initially designed as a series of inde-
pendent layers [15] with a focus on placing functionality
at the end-hosts [30]. This approach explicitly sacrificed
performance for generality. Improvements to this design,
in terms of TCP modifications such as NewReno, Vegas,
and SACK [17, 14, 22] and in terms of buffer manage-
ment such as RED and Fair Queuing [18, 16] were pro-
posed. However, all of these approaches focused on im-
proving the notification and response of end-hosts. Con-
sequently, they operate at coarse-grained timescales in-
appropriate for our workload. Furthermore, all of these
traditional approaches focus on single path flow traver-
sal.

9.2 Datacenter Networks
Relevant datacenter work has focused on two ar-
eas: topologies and traffic management protocols. New
topologies such as FatTrees, VL2, BCube, and DCell
[10, 19, 20, 21] were proposed to increase bisection
bandwidth. All of these approaches focused on increas-
ing the number of paths between the source and destina-
tion because increasing link speeds was seen as impossi-
ble or prohibitively expensive.

Prior work has also focused on traffic management
protocols for datacenters. DCTCP proposed mechanisms
to improve flow completion time by reducing buffer oc-
cupancies [12]. D3 sought to allocate flow resources
based on application-specified deadlines [34]. Both of
these protocols employed single path mechanisms to
optimize the partition-aggregate workload. Conversely,
DeTail provides multipath mechanisms designed to im-
prove the performance of both partition-aggregate and
sequential workloads, which cannot be easily paral-
lelized and have stricter flow completion requirements.

The recent industrial effort known as Datacenter

Bridging seeks to extend Ethernet to support traffic from
other protocols that have different link layer assumptions
[2]. DeTail leverages PFC, which was developed as a part
of this effort [7]. However, as these mechanisms were
designed for a different purpose, they are insufficient for
meeting our performance goals. For example, they do not
propose a multipath solution.

Datacenter protocols focused on spreading load across
multiple paths have been proposed. Hedera performs pe-
riodic flow re-mapping of elephant flows [11]. MPTCP
takes a step further, making TCP aware of multiple paths
[29]. While these approaches provide multipath support,
they do not perform in-network traffic management or
traffic differentiation. Furthermore, these approaches tra-
ditionally focus on improving system throughput instead
of reducing the flow completion time tail.

9.3 HPC Interconnects
As mentioned earlier, DeTail borrows mechanisms from
HPC interconnects. Credit-based flow control has been
extensively studied and deployed [9]. Adaptive load bal-
ancing algorithms such as UGAL and PAR have also
been proposed [9]. To the best of our knowledge, these
mechanisms have not been evaluated for web-facing dat-
acenter networks focused on reducing the flow comple-
tion tail.

A commodity HPC interconnect, Infiniband, has made
its way into datacenter networks [5]. While Infiniband
provides flow control and priority mechanisms, it does
not perform adaptive load balancing. As such Infiniband
suffers from the same head-of-line blocking issues that
PFC mechanisms do. Host-based approaches to perform-
ing load-balancing, such as [33] have been proposed.
But these host-based approaches are limited because they
cannot respond in less than one RTT.

10 Conclusion
In this paper, we presented DeTail, an in-network
multipath-aware congestion control mechanism designed
to reduce the flow completion time tail. We demon-
strated that DeTail’s synthesis of existing mechanisms
effectively manages congestion in the datacenter, reduc-
ing network variability. Additionally, we showed that the
combination of these mechanisms is more effective than
just the sum of its parts. These mechanisms assist each
other to overcome the limitations of using any of them
individually.

We extensively evaluated DeTail through simulation
and implementation, demonstrating its ability to reduce
the 99th percentile flow completion time across a wide
variety of workloads. Our results verify that DeTail is an
effective approach for web sites to meet their interactiv-
ity deadlines while serving richer content.

13

11 Acknowledgements
This work is supported by MuSyC: ”Multi-Scale Sys-
tems Center”, MARCO, Award #2009-BT-2052 and Am-
pLab: ”AMPLab: Scalable Hybrid Data Systems In-
tegrating Algorithms, Machines and People”, DARPA,
Award #031362. Additionally, we would like to thank
Scott Shenker and Sylvia Ratnasamy for their insightful
comments and suggestions.

References
[1] Average web page size septuples since 2003.

http://www.websiteoptimization.com/speed/tweak/average-
web-page/.

[2] Data center bridging. http://www.cisco.com/en/US/solutions/
collateral/ns340/ns517/ns224/ns783/at a glance c45-
460907.pdf.

[3] Datacenter networks are in my way.
http://mvdirona.com/jrh/TalksAndPapers/ JamesHamil-
ton CleanSlateCTO2009.pdf.

[4] Fulcrum focalpoint 6000 series.
http://www.fulcrummicro.com/product library/
FM6000 Product Brief.pdf.

[5] Infiniband architecture specification release 1.2.1.
http://infinibandta.org/.

[6] Ns3. http://www.nsnam.org/.

[7] Priority flow control: Build reliable layer 2 infrastruc-
ture. http://www.cisco.com/en/US/prod/collateral/switches/
ps9441/ps9670/white paper c11-542809.pdf.

[8] Ieee standard part 3: (csma/cd) access method and physical layer
specifications - section two. IEEE Std 802.3-2008 (Revision of
IEEE Std 802.3-2005) (26 2008).

[9] ABTS, D., AND KIM, J. High performance datacenter networks:
Architectures, algorithms, and opportunities. Synthesis Lectures
on Computer Architecture 6, 1 (2011).

[10] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A scalable,
commodity data center network architecture. In ACM SIGCOMM
Conference (2008), SIGCOMM ’08, ACM.

[11] AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN, B.,
HUANG, N., AND VAHDAT, A. Hedera: Dynamic flow schedul-
ing for data center networks. In NSDI Symposium (2010).

[12] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE,
J., PATEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRIDHA-
RAN, M. Data center tcp (dctcp). In ACM SIGCOMM Conference
(2010), SIGCOMM ’10, ACM.

[13] BENZEL, T., BRADEN, R., KIM, D., NEUMAN, C., JOSEPH,
A., SKLOWER, K., OSTRENGA, R., AND SCHWAB, S. Experi-
ence with deter: a testbed for security research. In In TRIDENT-
COM (2006).

[14] BRAKMO, L. S., O’MALLEY, S. W., AND PETERSON, L. L.
Tcp vegas: new techniques for congestion detection and avoid-
ance. In ACM SIGCOMM Conference (1994), SIGCOMM ’94,
ACM.

[15] CLARK, D. The design philosophy of the darpa internet proto-
cols. In ACM SIGCOMM Conference (1988), SIGCOMM ’88,
ACM.

[16] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and
simulation of a fair queueing algorithm. In ACM SIGCOMM
Conference (1989), SIGCOMM ’89, ACM.

[17] FLOYD, S., AND HENDERSON, T. The newreno modification to
tcp’s fast recovery algorithm, 1999.

[18] FLOYD, S., AND JACOBSON, V. Random early detection gate-
ways for congestion avoidance. IEEE/ACM Trans. Netw. 1 (Au-
gust 1993).

[19] GREENBERG, A., HAMILTON, J. R., JAIN, N., KANDULA, S.,
KIM, C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND SEN-
GUPTA, S. Vl2: a scalable and flexible data center network. In
ACM SIGCOMM Conference (2009), SIGCOMM ’09, ACM.

[20] GUO, C., LU, G., LI, D., WU, H., ZHANG, X., SHI, Y., TIAN,
C., ZHANG, Y., AND LU, S. Bcube: A high performance, server-
centric network architecture for modular data centers. In In SIG-
COMM (2009).

[21] GUO, C., WU, H., TAN, K., SHI, L., ZHANG, Y., AND LU,
S. Dcell: a scalable and fault-tolerant network structure for data
centers. In Proceedings of the ACM SIGCOMM 2008 conference
on Data communication (2008), SIGCOMM ’08, ACM.

[22] JACOBSON, V., AND BRADEN, R. T. Tcp extensions for long-
delay paths, 1988.

[23] KOHAVI, R., AND LONGBOTHAM, R. Online exper-
iments: Lessons learned, September 2007. http://exp-
platform.com/Documents/IEEEComputer2007 OnlineEx-
periments.pdf.

[24] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND
KAASHOEK, M. F. The click modular router. ACM Trans. Com-
put. Syst. 18 (August 2000).

[25] LU, G., GUO, C., LI, Y., ZHOU, Z., YUAN, T., WU, H.,
XIONG, Y., GAO, R., AND ZHANG, Y. Serverswitch: A pro-
grammable and high performance platform for data center net-
works. In NSDI (2011).

[26] MCKEOWN, N. White paper: A fast switched backplane for a
gigabit switched router.

[27] MCKEOWN, N. The islip scheduling algorithm for input-queued
switches. IEEE/ACM Trans. Netw. 7 (April 1999).

[28] OUSTERHOUT, J. K., AGRAWAL, P., ERICKSON, D.,
KOZYRAKIS, C., LEVERICH, J., MAZIÈRES, D., MITRA,
S., NARAYANAN, A., ROSENBLUM, M., RUMBLE, S. M.,
STRATMANN, E., AND STUTSMAN, R. The case for ramclouds:
Scalable high-performance storage entirely in dram. In SIGOPS
OSR (2009), Stanford InfoLab.

[29] RAICIU, C., PLUNTKE, C., BARRE, S., GREENHALGH, A.,
WISCHIK, D., AND HANDLEY, M. Data center networking with
multipath tcp. In ACM HOTNETS Workshop (2010), Hotnets ’10,
ACM.

[30] SALTZER, J. H., REED, D. P., AND CLARK, D. D. End-to-
end arguments in system design. ACM Trans. Comput. Syst. 2
(November 1984).

[31] SHIEH, A., KANDULA, S., GREENBERG, A., KIM, C., AND
SAHA, B. Sharing the data center network. In NSDI (2011).

[32] VASUDEVAN, V., PHANISHAYEE, A., SHAH, H., KREVAT, E.,
ANDERSEN, D. G., GANGER, G. R., GIBSON, G. A., AND
MUELLER, B. Safe and effective fine-grained TCP retransmis-
sions for datacenter communication. In Proc. ACM SIGCOMM
(Aug. 2009).

[33] VISHNU, A., KOOP, M., MOODY, A., MAMIDALA, A. R.,
NARRAVULA, S., AND PANDA, D. K. Hot-spot avoidance with
multi-pathing over infiniband: An mpi perspective. In Proceed-
ings of the Seventh IEEE International Symposium on Cluster
Computing and the Grid (2007), CCGRID ’07, IEEE Computer
Society.

[34] WILSON, C., BALLANI, H., KARAGIANNIS, T., AND
ROWTRON, A. Better never than late: meeting deadlines
in datacenter networks. In ACM SIGCOMM Conference (2011),
SIGCOMM ’11, ACM.

14

Notes
1We do not consider jumbo Ethernet frames.
2PFC is only defined for 10 GigE. We use 1 GigE in this paper for

manageable simulation times. We base our PFC response time on the
time specified for Pause frames. This is appropriate because 10GigE
links are given the same amount of time to respond to PFC messages
are they are to Pause frames.

15

